Tipperary NZEB Event

Achieving NZEB-Dwellings

Orla Coyle– NZEB and High Performance Retrofit- Programme Manager 26th November 2019

Domestic – New Buildings - NZEB

25% Improvement on Current Regulations Same Fabric Performance

- Boiler with Increased PV
- Boiler with MVHR and PV

- Heat Pump

MPEPC:0.3MPCPC:0.35RER:20%

Durkan Homes – Citywest

Backstop U values & Air Permeability

Table 1	Maximum elen (W/m²K) ^{1, 2}	nental U-value
Column 1 Fabric Elements	Column 2 Area-weighted Average Elemental U-value (Um)	Column 3 Average Elemental U-value – individual element or section of element
Roofs		
Pitched roof - Insulation at ceiling - Insulation on slope	0.16 0.16	0.3
Flat roof	0.20	
Walls	0.18	0.6
Ground floors ³	0.18	0.6
Other exposed floors	0.18	0.6
External doors, windows and rooflights	1.4 ^{4,5}	3.0
 Notes: The U-value incluspaces. For alternative n paragraph 1.3.2. For insulation of incorporating un 4. Windows, doors U-value of 1.4 W The NSAI Window provides a rating solar transmittar 	ludes the effect of uni nethod of showing co. 3. ground floors and ex derfloor heating, see and rooflights should //m ² K. w Energy Performan of or windows combin ice. The solar transm	heated voids or other mpliance see posed floors paragraph 1.3.2.2. I have a maximum ce Scheme (WEPS) ing heat loss and ittance value g perp

N S		Agrément		
Document Title	NSAI Agrément Certified Air Tightness Tester Scheme	Reference Page Revision	D-IAB-007 Page 1 of 10 5	

NSAI Agrément Approval Scheme for

Certified Air Tightness Tester Scheme Master Document

to

I.S. EN ISO 9972:2015 - Thermal Performance of Buildings -Determination of Air Permeability of Buildings - Fan Pressurization Method.

Reduction of air permeability backstop from 7m³/hr/m² to 5m³/hr/m²

Timelines for DEAP Methodology

- DEAP 4.2.0 Workbook (for information).
- DEAP 4.2 online software tool used for BER Publication and compliance checks with ALL versions of TGDs
- DEAP 3.2.1 retired on 31st Oct 2019
- Transitional Arrangement
 - Buildings Complying with 2019 Regulations: must use DEAP 4.2 online software tool to demonstrate compliance and publish BERs
 - Building Complying with 2011 Regulations: may continue to demonstrate compliance using DEAP 3.2.1 and under special circumstances may publish BERs up until 31st Dec 2019. Letter of Engagement and XML must be submitted to SEAI 5 days prior to publication.
 - Existing Buildings must use DEAP 4.2 online software to publish BERs

Software

https://www.seai.ie/home-energy/building-energy-rating-ber/support-for-ber-assessors/domestic-ber-resources/

Seal Sustainable Prinker Authority	MyBER 🖨	Important information regarding cookies and seai.ie By using this website, you consent to the use of cookies in accordance with the <u>SEAI Cookie Policy</u> . For more information on cookies see HIDE THIS MESSAGE
		agin
	Welcome to MyBER	
	MyBER is all about energy efficiency for buildings. All across Europe people are looking for ways to build more efficient buildings, and to upgrade existing buildings.	Username / Email
	MyBER provides access to tools and information supporting the provision of Building Energy Rating in Ireland. It supports a broad range of users which includes BER Assessors, BER Auditors, BER Clients and other technical users of BER data such as those involved in Building Regulation Compliance checking. You can also use MyBER to check that	Password
	your building plans meet the latest energy efficiency standards. MyBER introduces exciting developments such as the web-based Dwelling Energy Assessment Procedure (DEAP), the tool used by assessors to survey a home, offering significant enhancements to the existing DEAP software.	NEW TO MYBER? REGISTER HERE FORGOT PASSWORD?

Documentation

https://www.seai.ie/home-energy/building-energy-rating-ber/support-for-ber-assessors/domestic-ber-resources/

- DEAP Manual:
 - Heat Pump Methodology
 - District Heating Systems
 - Water Calculation
 - Lighting Calculation
 - Renewables
- Technical Guidance Documents
- Heat Pump Consultation and Guidance
- Thermal Bridging Calculation

Domestic Energy Assessment Procedure (DEAP) Version 4.2.1

Ireland's official method for calculating and rating the energy performance of dwellings

2	sea	SUSTAINABLE ENERGY AUTHORITY OF RELAVO	DEAP4	> Survey			• Addres	s line 1, Add	ress line 2	, County, Eir	code	1	Assess	ment 🏟	۲	> <
۲	FLOORS	ROOFS	WALLS	ROOMS	DOORS		WINDOWS	GLO	BAL FACT	ORS			Are	ea	Con	npleteness
													Room in Roof	120.00 m ²	89% total	60% evidence
	Average S	Storey Height	Storey 1 *	Storey 2 *	Storey 3 *								Heat Loss	Elements	Per	rformance
		, ,		2.7	<u> </u>								Floors	120.00 m ²	B	B A1
		-			. U	/F		Exposed					Roots	1,245.00 m ²		00.55
5	Storey~	Туре	Description	Age	Band H	leating	In Roof	Perimeter	Area	U-Value			Door	2,044.00 m	雪	ZZ.55 kWh/m²/yr
	1	Ground Floor -	Floor zero	2005	onwards N	lo	Yes	40.00	60.00	0.410	Г	ñ	Windows	5.00 m ²	ŝ	4.34
l v		Suspended										-	Total per m ²	97.15 m ²	~0	kgCO ₂ /m ² /yr
•	1	Ground Floor - Solid		2005	ōonwards Y	es	No		60.00	0.170	6	Ō	Max U-	Values	0.05	mpliance
													Average	\otimes		ternet
Ŷ	Total Floo	r area (m²)			120	0.00				\oplus	ADD F	LOOR	Elemental	\otimes		0.3
1	Total Hea	t Loss Floor Area (m	1 ²)		120	0.00									0.04	
															20	target 0.35
															0.012	
															ta	arget

Seal	INABLE SY AUTHORITY LAND			Part E R Date report created: 17/09 Pag
Part L Spec	ification			
Property Deta	ails			
Dwelling Type		Semi-detached house	Type of BER rating	lew Dwelling - Provisional
Address line 1		Example A - workbook 4.2 v 1.2	Year of Construction 2	019
Address line 2			Date of Assessment 2	9/07/2019
Address line 3			Date of Plans	
County		Dublin 2	Planning Reference	
Eircode			Building Regulations 2	019 TGD L
BER Number			Is MPRN shared with Another dwelling?	₩A
Purpose of rating	9	New dwelling for owner occupation	MPRN No. 0)
Comment				
Dimension Deta	ails			
	Area [m ²]	Height [m]	Volume [m ³]	
Ground Floor	63.00	2.40	151.20	
First Floor	63.00	2.70	170.10	
Second Floors	0.00	0.00	0.00	
Third and other floors	0.00	0.00	0.00	
Room in roof	0.00	0.00	0.00	
Total Floor Area	126.00		321.30	
Living Area [m ²]		31.50	Living area percentage [%]	25.00
No of Storeys		2		
Ventilation Deta	ails			
		Number		
Chimneys		0	Has permeability test been carrie	ed out? Yes
Open Flues		0	Structure type	N/A
Fans & Vents		1	Is there a suspended wooden gr floor?	ound No
Number of flueless heaters	combustion r	oom 0	Percentage windows/doors drau stripped [%]	ght 100.00
Is there a draught I entrance?	obby on main	No	Number of sides sheltered	2
		Whole-house		N/A
Ventilation method		extract ventilation	Mechanical Ventilation Manufact	urei

Reference Building is defined in Part L

DEAP Methodology – Asset Rating – Part L

Seal Sustainable Energy Authority OF IRELAND

DEAP reports on

Results Tab

- Energy Performance Coefficient/ Carbon Performance Coefficient
- Renewable Energy Ratio

Summary for Part L Conformance (Applies to TGD L 2008/2011/2019 for new dwellings only)

BER Number		Building Regulations	2019 TGD L
BER Result	A2	Energy Value kWh/m ² /yr	41.66
CO ₂ emissions [kg/m ² /yr]	7.61		
EPC	0.286	EPC Pass/Fail	Pass
CPC	0.253	CPC Pass/Fail	Pass

Conformity with renewable	energy technolog	jies requirement –	individual scheme	25
	Source	Renewables Primary Energy	Total Primary Energy	RER
+ Delivered energy	PV/Wind	1,327.040	1,327.040	
+ Delivered energy	Other	0.000	0.000	
+ Delivered energy	Solar	0.000	0.000	
+ Delivered energy	Biomass	0.000	0.000	
+ Delivered energy	Biodiesel	0.000	0.000	
+ Delivered energy	Bioethanol	0.000	0.000	
+ Environmental energy	HP	0.000	0.000	
+ Saved energy	CHP	0.000	0.000	
+ District heating	District Heating	0.000	0.000	
+ Delivered energy	Grid	0.000	39.735	
+ Delivered energy	Thermal	0.000	4,729.201	
SUBTOTAL		1,327.040	6,095.976	0.218 🗸

DEAP reports on

- Fabric Checks
- Infiltration Checks

Part L Conformance -	Fabric				
Conformity with Maximum avg U-value requirements	U-value [W/m ² K]	Pass/Fail	Conformity with Maximum U-value requirements	U-Value [W/m ² K]	Pass/Fail
Pitched roof insulated on ceiling	0.11	Pass	Roofs	0.11	Pass
Pitched roof insulated on slope	0	Pass	Walls	0.13	Pass
Flat Roof	0	Pass	Floors	0.14	Pass
Floors with no underfloor heat	0.14	Pass	External doors / windows / rooflights	1.50	Pass
Floors with underfloor heat	0.00	Pass			
Walls	0.13	Pass			
Percentage of opening areas [%]	24.96				
Average U value of openings	0.94	Pass			
Permeability test carried out	and meets guideline	es in TGD L		0.15 P	ass

Conformity with maximum average U-value requirements Average elemental U-values W/m²K Pitched roof insulated on slope 0.000 🗸 0.110 🗸 Pitched roof insulated on ceiling Flat roof 0.000 🗸 Floors with no underfloor heat 0.140 🗸 0.000 🗸 Floors with underfloor heat 0.130 🗸 Walls 24.960 Percentage of opening areas [%] 0.935 🗸 Average U-value of openings Permeability test carried out and meets guidelines of TGDL 0.150 🗸 Conformity with maximum elemental U-value requirements Maximum elemental U-Values W/m²K Roofs 0.110 🗸 0.130 🗸 Walls 0.140 🗸 Floors External doors windows/rooflights 1.500 🗸

Changes to the Calculation Methodology

Renewable Energy Ratio

- Calculated in line with ISO 52000
- Included:
 - PV
 - Solar
 - Wind
 - Heat Pump
 - Biomass/ Biogas
 - District heating
 - CHP

Key

- a assessment boundary (use energy balance) 1 PV, solar
 - perimeter: on-site
- c perimeter: nearby
- d perimeter: distant
- S1 thermally conditioned space
- 4 heat pump

wind

2

3

5 district heating/cooling

boiler room

- S2 space outside thermal envelope
- 6 substation (low/medium voltage and possible storage)

The Renewable Energy Ratio *RER* =

 $\frac{E_{Pren}}{E_{Ptot}} \frac{\text{Primary Energy of the Renewables}}{\text{Total Primary Energy}}$

Renewable Energy Ratio - General

PV/ Wind/Solar/Biomass/ Biogas/ District Heating

- Equation 1 Ep, ren = Generated Energy x Fp, ren
- Equation 2 Ep, tot = Generated Energy x Fp, ren + Generated Energy x Fp, nren

Renewable Energy Ratio (new dwelling compliance)

PV Example	Delivered Energy	PEF	Primary Energy	
Main space	3521	1.1	3873	
Secondary space	770	1.1	847	
Main water	2423	1.1	2665	
Supplementary water	0	0	0	
Pumps, fans & electric showers	130	2.08	270	
Lighting	272	2.08	566	
PV	- 1224	2.08	-2546	
Total			5675	

- Calculate electricity generated by the on-site PV, in kWh.
- Generated electricity is multiplied by the PEF of the PV to determine the total and renewable primary energy.

RER = Epren = 2546 kWh/yEptot = 5675 + 2546 = 8221 kWh/y = 0.31

Renewable Energy Ratio – Heat Pump

Heat Pump

• Environmental Energy = (Htg Demand_{HP} - Consumed Energy_{HP})

		E	fPnren	fPren on-site	EPnren	Epren on-site	EPtot	RER
		kWh			kWh	kWh	kWh	nrb-os
+ Delivered energy	PV/Wind	0.0	0	2.08	0.0	0.0	0.0	
+ Delivered energy	Other	0.0	0	1	0.0	0.0	0.0	
+ Delivered energy	Solar	0.0	0	1	0.0	0.0	0.0	
+ Delivered energy	Biomass	0.0	0.1	1	0.0	0.0	0.0	
+ Delivered energy	Biodiesel	0.0	0.3	1	0.0	0.0	0.0	
+ Delivered energy	Bioethanol	0.0	0.34	1	0.0	0.0	0.0	
+ Environmental energy	HP	1842.4	0	1	0.0	1842.4	1842.4	
+ Saved energy	СНР	0.0	0	1	0.0	0.0		
+ Delivered energy	District Heating	0.0	0.6	0.4	0.0	0.0	0.0	
+ Delivered energy	Grid	1571.3	2.08	0	3268.4	0.0	3268.4	
+ Delivered energy	Thermal	0.0	1.1	0	0.0	0.0	0.0	
TOTAL STEP A					3268.4	1842.4	5110.8	0.36

Renewable Energy Ratio (new dwelling compliance)

HP Example	Delivered Energy	PEF	Primary Energy
Main space	538	2.08	1119
Secondary space	447	1.1	492
Main water	949	2.08	1974
Pumps, fans & electric showers	175	2.08	364
Lighting	272	2.08	566
Total			4,515

HP Example	Heat Use	HP %	Elec. Use (Del. Energy)	Environmental Energy
Main space	2365	4.4	538	1827
Main water	2088	2.2	949	1139
Total				2966

RER = Epren = 2966 kWh/y Eptot = 4515 + 2966 = 7481 kWh/y = 0.40

Renewable Energy Ratio – CHP

CHP

• Saved Energy =

Heat $Demand_{CHP} \times [(PEF_{gas} / 0.9) + ((CHP_{eff_elec} \times PEF_{elec}) / CHP_{eff_heat}) - (PEF_{gas} / CHP_{eff_heat})]$

Water Heating – Changes to energy demand calculation

New methodology will take account of

- Updated occupancy rates
- Shower types and presence of baths
- Electricity used by electric showers
- Low water use fittings

NZEB Apartment (Regulatory Impact Assessment)

- Primary Space Heating Primary Water Heating
- Primary Lighting

Primary Pumps/ Fans

Water heating – Hot water required for showers

- Daily hot water requirement is calculated individually for each shower in the dwelling & then summed
- For each shower, hot water requirement depends on
 - No. of occupants (floor area) & adjusted to account for a bath if present
 - Shower flow rate (Hot water pressure) depends on plumbing arrangement, pumps, flow restrictors

2	Seal Sustainage BRERGY AUTHORITY	DEAP4 > Survey					🕈 TGD A	× 🗡 🌣	ī Ū
۲	OPTIONS & STORAGE	SOLAR HEAT SOURCE							
Â	Showers						Ð	ADD SHOWER	S & BATHS
\$	Count ~ Room	Name Description	Туре	Mixer System	Flow Restrictor	Flow Rate	Waste Water Heat Recovery Efficiency	Waste Water Heat Recovery Utilisation	
Q	2	Test	Mixer	Vented hot water system + pump	Yes	6.00			00
٠	🖨 Baths								
Q	Count	~ R	Room	Name	Description				
1	1			Bath					00

Water Heating – Entering showers in DEAP

Instantaneous Electric Shower

- Don't use any hot water they only have a cold water feed
- The significant amount of electricity they use is accounted for in DEAP
- Also affects the heat gain calculation in DEAP

Water Heating – Bath in dwelling

- The amount of hot water used in baths depends on
 - no. of occupants (floor area) & adjusted to account for a shower if present

Daily Hot Water Usage	
No of Mixer Showers	2
No of Electric Showers	1
No of Baths	1
Low water usage (less than 125 l/p/d)	No

OF IRELAND

a Bath present within Dwelling	Yes	No	
ot Water Usage from Showers			
No of Showers Taken		1.72	2.21

Water Heating - instantaneous waste water heat recovery

- Use a heat exchanger to recover heat from waste warm water to pre-heat the cold water feed of a shower
- The energy recovered depends on
 - the number and type of systems that are installed.

Water Heating – reduced water consumption (target \leq 125 l/p/d)

• Where the design of the system reduces overall water consumption within the dwelling, the methodology will allow the benefits to be accounted for in the Hot Water Energy Demand.

DEAP - Water Efficiency Calculation Tool

Version 1.0

The purpose of this utility is to enable the calculation of the water efficiency calculation methodology for assessing the whole house potable water consumption in the dwellings in the SEAI DEAP (Domestic Energy Assessment Procedure) software.

Assessors should proceed to the relevant "Input" tab

igures from manufacturers' product details should be entered into Table 1 to calculate the consumption of each fitting in litres per person per day. Where there are multiple fittings of the same type hat have various flow rates or capacities (e.g. hot and cold taps with different flow rates). Table 2.1 to 2.7 on the Multiple Fittings should be used to determine the average flow rate or capacity of unit fittings. The communities of the same type and the same type with the exception of the total water consumption figures, which should be rounded to one decimal place.

Table 1							
Installation Type	Unit of Measure	(1) Capacity/ Flow Rate	(2) Use Factor	(3) Fixed Use (litres/person/day)	(4) Litres per person per day (1) x (2) + (3)		
WC (Single Flush)	Flush Volume (litres)	0	4.42	0	0		
WC (Durit Flumb)	Full Flush Volume (litres)	8	1.46	0	11.68		
we (buar riush)	Part Flush Volume (litres)	4	2.96	0	11.84		
WCs (Multiple Fittings)	Average effective flushing volume (litres)		4.42	0	0		
Taps (excluding Kitchen/ utility room taps)	Flow rate (litres/minute)	6	1.58	1.58	11.06		
Bath (where shower also present)	Capacity to overflow (litres)	50	0.11	0	5.5		

Daily Hot Water Usage	
No of Mixer Showers	2
No of Electric Showers	1
No of Baths	1
Low water usage (less than 125 l/p/d)	No

Water Heating – Impact of changes

Lighting – Changes to lighting demand calculation

Portable Lighting:

• Efficiency improved based on UK Household Electricity Survey

Fixed lighting:

- Lighting Design Known: input wattage and efficacy based on design of the installed lighting
- Lighting Design Unknown: the assessor enters no. of each lamp type

Lighting – Changes to lighting demand calculation

Benefits:

- Takes account of different lighting designs
- Takes account of new high performance light fittings, such as LEDs
- Where lighting is overdesigned, the additional energy use is accounted for
- Where lighting is under-designed, the lighting is supplemented with portable lighting, therefore encouraging adequate lighting to be designed.

Lighting – Lighting Design Known

Input

- Enter Lamp Power in Watts
- Enter lamp efficacy in lumen/watt **if available** or default lumen/watt is applied

Edit Bulb		×
Q Product Details	🧨 Survey Details	
Bulb Type LED/CFL Manufacturer Model	Number of items * 1	Room None
	Description Power [W] *	Efficiency [Im/W] *
VIEW DETAILS IN LIBRARY	Is lighting design known?	<u></u>

Lighting – Lighting Design Unknown (default)

Input

- Number of each bulb type
- Applies **default** lumen/watt based on lamp type

Add from Library							
сомм	ON ITEMS SEARCH RECENT ITEMS						
Туре	Name & Product Details	✓ Source					
Ō	Default Halogen Lamp Bulb Type: Halogen Lamp , Efficiency: 15.7	•	E	۹			
Q	Default Halogen LV Bulb Type: Halogen LV, Efficiency: 26.1	9	E	۹			
Q	Default Incandescent Bulb Type: Incandescent, Efficiency: 11.2	0	E	۹			
Q	Default LED/CFL Bulb Type: LED/CFL, Efficiency: 66.9	0	E	۹			
Ō	Default Linear Fluorescent Bulb Type: Linear Fluorescent, Efficiency: 80.5	•	E	۹			

Lighting – Impacts of changes

• 100% CFLs/LEDs in 120 sqm dwelling

35

DEAP 4.2

Ventilation – Changes to MVHR input

- Efficiency adjustment factor for MVHR systems where ductwork outside the insulated dwelling envelope is **uninsulated**.
- Reduces heat exchanger efficiency by 15% increases ventilation heat loss

	INFILTRATION DUE TO OPENINGS	STRUCTURAL AIR TIGHTNESS	VENTILATION METHOD				
	Method				Specific Fan Power [W/[l/s]]		Heat Exchanger Efficiency [%]
	Balanced Whole-house mechanical ventilation v	with neat recovery		¥	0.8		85
	Manufacturer	Model			How many wetrooms (including kitcher	n)? Is the ventilat	tion ducting flexible/rigid/both?
1	External Uninsulated Ducting						

Ventilation – Exhaust Air Heat Pumps

- Where Exhaust Air Heat Pumps are used, enter the Air Flow Rate from the test data
- Where ventilation rate exceeds default, additional load is accounted

Exhaust Air Flow Rate [m ³ /h] * 120			Exhaust Air Flow Rate [m ³ /h] * 250	
Ventilation		Ventilation		
Ventilation Method	Exhaust Air Heat Pump	Ventilation Method		Exhaust Air Heat Pump
Electricity for ventilation fans [kWh/y]	49.76	Electricity for ventilation fans [kWh/	Electricity for ventilation fans [kWh/y]	
Heat gains from ventilation fans [W]	0.00	Heat gains from ventilation fans [W]		0.00
Effective air change rate [ac/h]	0.515	Effective air change rate [ac/h]		0.843
Ventilation heat loss [W/K]	33.74	Ventilation heat loss [W/K]		55.19

Exhaust Air Heat Pumps – Renewable Contribution

Renewable Contribution in line with Renewable Energy Directive

% Renewable based on load provided by Heat Pump versus load provided by Heat Pump and Ventilation system specific to Irish weather data

Comparison of Mid Floor Apartment

Parameter	Part L 2019 Gas Boiler	Part L 2019 Heat Pump	Part L 2019 Exhaust Air Heat Pump
Wall U Value	0.13 W/m2K	0.13 W/m2K	0.13 W/m2K
Party Wall U value	0.19 W/m2K	0.19 W/m2K	0.19 W/m2K
Window U Value	0.9 W/m2K	0.9 W/m2K	0.9 W/m2K
Thermal Bridging	0.05	0.05	0.05
Air Permeability & Ventilation	3 m3/hr/m2 MVHR SFP 0.8 HR 85%	3 m3/hr/m2 cMEV SFP 0.2	3 m3/hr/m2 EAHP SFP – 0.2 100 m3/h
Secondary Heating	NA	NA	NA

Comparison of Mid Floor Apartment

Parameter	Part L 2019 Gas Boiler	Part L 2019 Heat Pump	Part L 2019 Exhaust Air Heat Pump
Space Heating	Boiler 91.3%	Heat Pump 400% Htg & 210% HW	EA Heat Pump 400% Htg & 210% HW
Controls	Time & Temperature	Time & Temperature	Time & Temperature
HW	Flow Restrictor on Shower 125 l/person/day	Flow Restrictor on Shower 125 l/person/day	Flow Restrictor on Shower 125 l/person/day
Lighting	94 lumen/cW 4 W/m2	94 lumen/cW 4 W/m2	94 lumen/cW 4 W/m2
Photovoltaic	0.6 kWp	0	0
Primary Energy/ C02	37 kWh/m2 / 7 kgCO2/m2	40 kWh/m2 / 8 kgCO2/m2	40 kWh/m2 / 8 kgCO2/m2
EPC/ CPC	0.28 / 0.26	0.29 / 0.28	0.29 / 0.28
RER	0.23	0.34	0.20

Going Forward

Technical Developments

- Primary Energy Factor
- District Heating Schemes Primary Energy Factors

Guidance

- Water Efficiency Calculator
- Thermal Bridging Guidance
- Heat Pump Designer/ Installer
- Group Heating Systems

DEAP - Water Efficiency Calculation Tool

Version 1.0

The purpose of this utility is to enable the calculation of the water efficiency calculation methodology for assessing the whole house potable water consumption in the dwellings in the SEAI DEAP (Domestic Energy Assessment Procedure) software.

Assessors should proceed to the relevant "Input" tab

Internal Environmental Quality

The limits of thermal comfort: avoiding overheating in European buildings

Questions

